Bibliography next up previous
Next: About the Authors Up: Towards Adaptive Web Sites: Previous: Conclusion

Bibliography

1
R. Agrawal, T. Imielinski, and A. Swami.
Mining Association Rules between Sets of Items in Large Databases.
In Proceedings of SIGMOD-93, pages 207-216, 1993.

2
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo.
Fast Discovery of Association Rules, pages 307-328.
MIT Press, Cambridge, MA, 1996.

3
R. Agrawal and R. Srikant.
Fast Algorithms for Mining Association Rules.
In Proceedings of the 20th VLDB Conference, 1994.

4
E. André, W. Graf, J. Müller, H.-J. Profitlich, T. Rist, and W. Wahlster.
AiA: Adaptive Communication Assistant for Effective Infobahn Access.
Document, DFKI, Saarbrücken, 1996.

5
R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell.
Webwatcher: A learning apprentice for the world wide web.
In Working Notes of the AAAI Spring Symposium: Information Gathering from Heterogeneous, Distributed Environments, pages 6-12, Stanford University, 1995. AAAI Press.

6
M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu.
System Demonstration - Strudel: A Web-site Management System.
In ACM SIGMOD Conference on Management of Data, 1997.

7
J. Fink, A Kobsa, and A. Nill.
User-oriented Adaptivity and Adaptability in the AVANTI Project.
In Designing for the Web: Empirical Studies, Microsoft Usability Group, Redmond (WA)., 1996.

8
A. Fox, S. Gribble, Y. Chawathe, and E. Brewer.
Adapting to Network and Client Variation Using Infrastructural Proxies: Lessons and Perspectives.
IEEE Personal Communications, 5(4):10-19, 1998.

9
R. Khare and A. Rifkin.
XML: A Door to Automated Web Applications.
IEEE Internet Computing, 1(4):78-87, 1997.

10
H. Lieberman.
Letizia: An agent that assists web browsing.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages 924-929, 1995.

11
S. Luke, L. Spector, D. Rager, and J. Hendler.
Ontology-based web agents.
In Proc. First Intl. Conf. Autonomous Agents, 1997.

12
T. Mitchell.
Machine Learning.
McGraw Hill, 1997.

13
M. Perkowitz and O. Etzioni.
Adaptive web sites: an AI challenge.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 1997.

14
M. Perkowitz and O. Etzioni.
Adaptive web sites: Automatically learning from user access patterns.
In Proceedings of the Sixth Int. WWW Conference, Santa Clara, CA, 1997.

15
M. Perkowitz and O. Etzioni.
Adaptive Web Sites: Automatically Synthesizing Web Pages.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.

16
E. Rasmussen.
Clustering algorithms.
In W.B. Frakes and R. Baeza-Yates, editors, Information Retrieval, pages 419-442. Prentice Hall, Eaglewood Cliffs, N.J., 1992.

17
T. Rist, E. André, and J. Müller.
Adding Animated Presentation Agents to the Interface.
In Proceedings of the 1997 International Conference on Intelligent User Interfaces, pages 79-86, Orlando, Florida, 1997.

18
J. Rocchio.
Document Retrieval Systems -- Optimization and Evaluation.
PhD thesis, Harvard University, 1966.

19
A. Savasere, E. Omiecinski, and S. Navathe.
An Efficient Algorithm for Mining Association Rules in Large Databases.
In Proceedings of the 21st VLDB Conference, 1995.

20
R. Segal.
Data Mining as Massive Search.
PhD thesis, University of Washington, 1996.
http://www.cs.washington.edu/homes/segal/brute.html.

21
H. Toivonen.
Sampling Large Databases for Association Rules.
In Proceedings of the 22nd VLDB Conference, pages 134-145, 1996.

22
E.M. Voorhees.
Implementing agglomerative hierarchical clustering algorithms for use in document retrieval.
Information Processing & Management, 22:465-476, 1986.

23
A. Wexelblat and P. Maes.
Footprints: History-rich web browsing.
In Proc. Conf. Computer-Assisted Information Retrieval (RIAO), pages 75-84, 1997.

24
P. Willet.
Recent trends in hierarchical document clustering: a critical review.
Information Processing and Management, 24:577-97, 1988.



Mike Perkowitz
1999-03-02