Performance Implications next up previous
Next: Experimental Evaluation Up: Item-based Collaborative Filtering Algorithm Previous: Regression

Performance Implications

The largest E-Commerce sites operate at a scale that stresses the direct implementation of collaborative filtering. In neighborhood-based CF systems, the neighborhood formation process, especially the user-user similarity computation step turns out to be the performance bottleneck, which in turn can make the whole process unsuitable for real-time recommendation generation. One way of ensuring high scalability is to use a model-based approach. Model-based systems have the potential to contribute to recommender systems to operate at a high scale. The main idea here to isolate the neighborhood generation and prediction generation steps. In this paper, we present a model-based approach to precompute item-item similarity scores. The similarity computation scheme is still correlation-based but the computation is performed on the item space. In a typical E-Commerce scenario, we usually have a set of item that is static compared to the number of users that changes most often. The static nature of items leads us to the idea of precomputing the item similarities. One possible way of precomputing the item similarities is to compute all-to-all similarity and then performing a quick table look-up to retrieve the required similarity values. This method, although saves time, requires an ${\cal {O}}(n^2)$ space for n items.

The fact that we only need a small fraction of similar items to compute predictions leads us to an alternate model-based scheme. In this scheme, we retain only a small number of similar items. For each item j we compute the k most similar items, where $k \ll n$ and record these item numbers and their similarities with j. We term kas the model size. Based on this model building step, our prediction generation algorithm works as follows. For generating predictions for a user u on item i, our algorithm first retrieves the precomputed k most similar items corresponding to the target item i. Then it looks how many of those k items were purchased by the user u, based on this intersection then the prediction is computed using basic item-based collaborative filtering algorithm.

We observe a quality-performance trade-off here: to ensure good quality we must have a large model size, which leads to the performance problems discussed above. In one extreme, we can have a model size of n, which will ensure exact same quality as original scheme but will have high space complexity. However, our model building step ensures that we retain the most similar items. While generating predictions, these items contribute the most to the prediction scores. Accordingly, we hypothesize that this model-based approach will provide reasonably good prediction quality with even a small model size and hence provide a good performance. We experimentally validate our hypothesis later in this paper. In particular, we experiment with the model size by varying the number of similar items to be stored. Then we perform experiments to compute prediction and response-time to determine the impact of the model size on quality and performance of the whole system.

next up previous
Next: Experimental Evaluation Up: Item-based Collaborative Filtering Algorithm Previous: Regression
Badrul M. Sarwar